تعداد بازدید
6 بازدید
38.250 تومان

توضیحات

حساب دیفرانسیل و انتگرال که به اختصار حسابان نامیده می‌شود (به فرانسوی: calcul différentiel et intégral)، یکی از شاخه‌های اصلی ریاضیات است. این رشته از تحول جبر و هندسه ناشی شده‌است. حسابان خود دو شاخه دارد: حساب فاضله (یا حساب دیفرانسیل) و حساب جامعه (یا حساب انتگرال). گوتفرید لایبنیتس و آیزاک نیوتون به‌طور هم‌زمان و مستقل این حساب را کشف و طراحی کردند اما علائمی که امروزه در این حساب استفاده می‌شود از ابداعات لایبنیتس است.

در ریاضیات، حساب دیفرانسیل یکی از زیرمجموعه‌های حسابان است که به مطالعهٔ نرخ تغییرات کمیت‌ها می‌پردازد. این حساب یکی از دو بخش سنتی حسابان است که بخش دیگر آن، حساب انتگرال است.

هدف اصلی مطالعهٔ حساب دیفرانسیل، محاسبهٔ تغیرات یک تابع و کاربردهای آن است. مشتق تابع در یک نقطهٔ دلخواه، نرخ تغییرات تابع در آن نقطه را توصیف می‌کند. فرایند یافتن مشتق، مشتق‌گیری نامیده می‌شود. از نظر هندسی، مشتق در یک نقطه شیب خط مماس روی نمودار تابعبا جهت مثبت محور طول ها در همان نقطه است؛ به شرطی که مشتق در آن نقطه موجود باشد. مشتق تابع حقیقی یک‌متغیره در هر نقطه، بهترین تقریب خطی برای تابع در آن نقطه است.

حساب دیفرانسیل و حساب انتگرال با قضیهٔ اساسی حسابان به یکدیگر مرتبط می‌شوند. این قضیه بیان می‌کند که مشتق‌گیری معکوس انتگرال‌گیری است.

مشتق‌گیری تقریباً در همهٔ علوم کمّی کاربرد دارد. برای نمونه، در فیزیک، مشتق جابجایی یک جسم متحرک برحسب زمان نشان دهندهٔ سرعت آن جسم و مشتق سرعت برحسب زمان بیانگر شتاب است. مشتق تکانهٔ یک جسم معادل با نیروی وارد بر آن جسم است و بازنویسی این مشتق‌گیری معادلهٔ معروف F = ma را که متناظر با قانون دوم حرکت نیوتن است، به دست می‌دهد. نرخ واکنش یک واکنش شیمیایی، یک مشتق است. مشتقات در تحقیق در عملیات، پربازده‌ترین روش‌های حمل مواد و طراح کارخانه‌ها را تعیین می‌کنند.

مشتقات برای یافتن بیشینه و کمینهٔ یک تابع نیز به کار می‌روند. معادلات دربرگیرندهٔ مشتقات، معادلات دیفرانسیل نامیده می‌شوند و در توصیف پدیده‌های طبیعی دارای اهمیت هستند. از مشتقات و تعمیم آن‌ها در بسیاری از شاخه‌های ریاضیات، مانند آنالیز مختلط، آنالیز تابعی، هندسهٔ دیفرانسیل، نظریهٔ اندازه و جبر مجرد بهره برده می‌شود.

 

فهرست مطالب:

پاسخ سوالات بخش مباحث مقدماتی

فصل اول: حدود و پیوستگی

فصل دوم: مشتق گیری

فصل سوم: توابع غیر جبری (متعالی)

فصل چهارم: کاربردهای بیشتر مشتق گیری

فصل پنجم: انتگرال گیری

فصل ششم: روش های انتگرال گیری

فصل هفتم: کاربردهای انتگرال گیری

فصل هشتم: مقاطع مخروطی، منحنی های (خم های) پارامتری و منحنی های (خم های) قطبی

فصل نهم: دنباله ها، سری ها و سری های توانی

فصل دهم: بردارها و هندسه مختصات در فضای سه بعدی

فصل یازدهم: توابع برداری و خم ها

فصل دوازدهم: مشتق گیری جزیی

فصل سیزدهم: کاربردهای مشتقات جزیی

فصل چهاردهم: انتگرال گیری چندگانه

فصل پانزدهم: میدان های برداری

فصل شانزدهم: حساب دیفرانسیل و انتگرال برداری

فصل هفدهم: معادلات دیفرانسیل معمولی

ضمیمه الف: اعداد مختلط

ضمیمه ب: توابع مختلط

ضمیمه ج: توابع پیوسته

ضمیمه د: انتگرال ریمان

راهنمای خرید:
  • لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
نقد و بررسی‌ها

هنوز هیچ نقد و بررسی وجود ندارد.

اضافه کردن نقد و بررسی

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *