توضیحات
شما بازدید کنند محترم میتوانید با هزینه ی اندکی فایل (توان و جذر) را تهیه فرمایید.
قسمتی از متن :
توان و جذر
توان
توان عملگری در ریاضی است که به صورت an نوشته میشود، به a پایه، و به n هم توان یا نما یا قوه میگویند. وقتی n عددی صحیح باشد، پایه، n بار در خود ضرب میشود:
همانطور که ضرب عملی است که عدد را n بار با خودش جمع میکند:
توان را به صورت a به توان n یا a به توان nام میخوانند، و همچنین میتوان آن را برای اعداد به توان غیرصحیح هم تعریف کرد.
توانی با چندین پایه: قرمز به توان e, سبز به توان ده و بنفش به توان 1.7. توجه داشته باشید که همه آنها از (0, 1) میگذرند. هر نشانه در محورها یک واحد است.
توان معمولاً به صورت بالانویس در سمت راست پایه نشان داده میشود. توان عملی در ریاضیات است که در بسیاری علوم دیگر از جمله اقتصاد، زیستشناسی، شیمی، فیزیک و علم رایانه، در قسمتهایی مانند بهره مرکب، رشد جمعیت، سینتیک، موج و رمزنگاری استفاده میشود.
توان با نماهای صحیح
عمل توان با نماهای صحیح تنها نیازمند جبر پایهاست.
نماهای صحیح مثبت
سادهترین نوع توان، با نماهای صحیح مثبت است. نما بیانگر این است که پایه چند بار باید در خود ضرب شود. برای مثال 35 = 3 × 3 × 3 × 3 × 3 = 243. در اینجا 3 پایه و 5 نما است، و 243 باب است با 3 به توان 5. عدد 3، 5 بار در عمل ضرب نشان داده میشود چون نما برابر 5 است.
به طور قراردادی، a2 = a×a را مربع، a3 = a×a×a را مکعب مینامیم. 32 «مربع سه» و 33 «مکعب سه» خوانده میشوند.
اولین توان را میتوانیم به صورت a0 = 1 و سایر توانها را به صورت an+1 = a·an بنویسیم.
نماهای صفر و یک
35 را میتوان به صورت 1 × 3 × 3 × 3 × 3 × 3 هم نوشت، عدد یک را میتوان چندین بار در عبارت مورد نظر ضرب کرد، زیرا در عمل ضرب عدد یک تفاوتی در جواب ایجاد نمیکند و همان جواب گذشته را میدهد. با این تعریف، میتوانیم آن را در توان صفر و یک هم استفاده کنیم:
هر عدد به توان یک برابر خودش است.
a1 = a
هر عدد به توان صفر برابر یک است.
جذر(ریشه دوم(
در ریاضیات، ریشه دوم یا جذر یک عدد حقیقی غیرمنفی به صورت نشان داده میشود و نتیجه آن عددی حقیقی غیر منفی است که مجذورش (عدد حاصل از ضرب یک عدد در خودش)[۱] برابر است.
برای مثال، جذر عدد ۹ برابر ۳ است (به صورت نمایش مییابد) زیرا داریم
جذر اغلب در هنگام حل معادله درجه دوم و یا معادلههای به شکل استفاده میشود، زیرا متغیر به توان دو رسیدهاست.
طبق قانون بنیادی جبری، دو جواب برای ریشه دوم یک عدد وجود دارد (این دو جواب در ریشه دوم عدد صفر با هم یکی هستند). برای هر عدد حقیقی مثبت دو جواب برای ریشه دوم وجود دارد که این دو جواب عددی هستند که یک بار منفی و یک بار مثبت است (به شکل ).
ریشه دوم اعدادی که مربع کامل نیستند همواره عددی گنگ است، یعنی اعداد را نمیتوان به صورت کسری از دو عدد صحیح گویا کرد. برای مثال، را نمیتوان دقیقاً به صورت m/n نوشت، که در آن n و m اعدادی صحیح هستند. در هر حال این عدد اندازه قطر مربعی به ضلع یک است. از مدتهای گذشته، عدد را عددی گنگ میدانستند و آن را به فیثاغورث نسبت میدادند.
نماد ریشه دوم () برای اولین بار در قرن شانزدهم استفاده شد. به نظر میرسد که این علامت از حرف کوچک r برگرفته شدهاست، که بیانگر واژه لاتین radix به معنای ریشه است.
تصاویری از چند صفحه نخست فایل :
توجه فرمایید بدلیل تهیه ی تصویر با نرم افزار های خارجی متن نمایش داده شده در تصاویر ممکن است دارای اشکالاتی در نمایش برخی حروف باشد که در فایل اصلی بدون مشکل است
- لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
هنوز هیچ نقد و بررسی وجود ندارد.